A GPGPU Acceleration of Reqgular Expressions

== Ames Laboratory

Creating Materials & Energy Solutions

ENT OF ENERGY

Regular Expression Overview Regular Expression: aa(alb)
Define a set of strings using a compact description.
- Eg. the exact word ‘cat’: cat; all strings containing the word cat: .*cat.*; the characters
‘cat’ in that order anywhere in a string: .*c.*a.*t.”
- Applications include document search, syntax highlighting, network security, and
many others. Languages and tools include grep, vi, Perl, Java, awk, and many others.
- Most implementations add convenience operators, or extend the expressive power.

Formally, given a finite alphabet, the following are defined:
- Constants: empty set, empty string, literal characters in the alphabet
- Operations: concatenation, alternation, Kleene star (O or more repetitions)

Two equivalent representations:

- Non-deterministic Finite Automata (NFA): A label may appear on multiple outgoing edges.
- Deterministic Finite Automata (DFA): A label may appear on at most one outgoing edge.

Regular Expression Evaluation Background Parallel NFA Processing: Two Approaches
Three basic evaluation approaches: INFANt - Parallel processing of edges.
- Explicit DFA: Incurs construction cost, but much fastest to - General algorithm:
process (O(n), where n is the size of the input string). 0) “Square” regular expression NFA, if desired (CPU)
- Implicit DFA: no construction cost, O(nm) run time where m is 1) For each character: (CPU)
NFA size. 1a) Get the list of NFA edges labelled with that character
- NFA w/ backtracking: More expressive, exponential run time. 1b) Spawn a CUDA thread to check each edge for
“liveness”.
2) CUDA Kernel: Edge is live if it connects to existing live edges.
3) Match if live edges exist at end of string.
- Athread processes a single transition for the current
— S character.
PRIy Py - Very simple Cuda kernels.
TP e - O((b/t) * n) processing time in general.
- When # of threads t >= branching factor b, O(n)
performance.

SDP Approach - Parallel processing of characters.
A - General algorithm:
0.1) '©2) (3.4 (1.,1) (T4) (2:3) (1.1) (14) (2.3) (0.1) (0.2) (3.4 Until entire string is processed, do:
v oy Vv Vv Vi 1) Break string up into paired substrings (CPU)
e r e s hoe ow e 2) CUDA Kernel: Check all edges between a substring pair to see

@ @ @ @ if “live” path-segments connect.

Perf ing, load Alive set = Ali = Ali = Alive set ={} . . . . . .
" NFA into CUBA. (0.1),(0.2) Ot (Ot 1), 3) Match if a live path-segment exists after entire string is
memory. (0,1)->(1,4), (0,1)->(1,1)->(1,4)} processed

(0,2)->(2,3)} .
- A thread processes all transitions between pairs of
abbaab abbaab SUbStrlngS

iINFANt

- More complex kernels
(@b 6.2 (@) (@bbe) {a) (abba.20) facpash) - O(b * n/t * log(n)) Processing time in general.
Vi Vo y \ - When # of threads t >=n, O(b * log n) processing time.

t1 t2 t3

Alive set =

(0101, @ @ @ Combined Approach

Load NFA into CUDA (0,1)->(1,4),(0,2)->(2,3), Alive set = {} Alive set = {} Alive set = {}

global memory. (2:9)>(3.4) Determine the best acceleration approach on the fly:
- When b > n /log(n), use INFAnNt
Future Work - When b < n/log(n), use SDP
- Compare iINFAnt and SDP approaches using both CPU and :
GPU threads. Contacts:
- Develop combined implementation which switches based on Chris Strasburg, cstras@ameslab.gov

NFA complexity and input string size. Swaroop Dhulpet, swaroop@cs.iastate.edu
- Compare combined approach with standalone and Samik Basu, sbasu@cs.iastate.edu

unaccelerated implementations. Johnny Wong, wong@cs.iastate.edu
- Explore integration with existing regular expression engines. Mark Gordon, mark@si.msg.chem.iastate.edu




